
ML4CO submission EFPP

Edward Lam∗ Frits de Nijs Pierre Le Bodic Peter J. Stuckey

Faculty of IT, Monash University
{Edward.Lam, Frits.Nijs, Pierre.LeBodic, Peter.Stuckey}@monash.edu

Abstract

This paper presents our submission to ML4CO, a branching rule that exploits
the structure within a problem class via a graph neural network that is trained
using a distributional reinforcement learning algorithm. The learned branching
rule participated in the dual bound challenge, ranking third among 23 entries.
Experiments on the ML4CO instances show that it performs between 16% and
34% better on average than the default reliability pseudocost branching in the
state-of-the-art academic solver SCIP.

1 Introduction

This paper presents our submission to dual bound challenge in the ML4CO competition. Our proposal
ranked third overall in the final evaluation. We developed a branching rule based on the state-of-the-art
Fully-parameterized Quantile Function (FQF) distributional reinforcement learning algorithm [5]. We
implemented four main novelties: 1) The branching rule is trained in an environment that is arguably
easier to learn and is different to the test environment. 2) The branching rule contains a graph neural
network that is trained on an encoding of the problem rather than of the variables and constraints of a
Mixed-Integer Programming (MIP) model. 3) The results of calling the neural network is cached and
recalled at alternating depths of the search tree to avoid expensive calculations. 4) The probability
distribution of rewards learned by FQF is constrained to be monotonically non-increasing.

2 Solution Methodology

Agent architecture We base our agent architecture on the Fully-parameterized Quantile Func-
tion (FQF) reinforcement learning (RL) algorithm. FQF is a state-of-the-art distributional RL
algorithm [5], a class of algorithms which attempt to learn the full probability distribution Zπ =∑∞
t=0 γ

tR(st, at) over returns (γ-discounted sum of rewards R(s, a) per chosen state-action), as
opposed to only its expected value Qπ = E [Zπ] [2]. The FQF algorithm operates on the inverse
cumulative distribution function of the returns, F−1

Zπ(s,a)(p), which is then approximated by a staircase
function supported on n quantile fractions. Two neural networks are used to capture this staircase
function: the fraction proposal network which learns to predict the optimal position of the support
(quantile cut points) τi, and the quantile value network which learns to predict the value of the return
F−1
Zπ(s,a)(τi) at the position of a support.

To extract features from the solver state, we replace the typical Convolutional Neural Network with a
Graph Neural Network (GNN) architecture. GNNs are layers in end-to-end deep learning models for
processing graph-structured data and enable learning on data with complex relationships. GNNs take
numbers (i.e., the features) from each vertex and apply a function before accumulating this number
with the numbers from its neighbors. We employ the Graph Isomorphism Network (GIN), which is
theoretically shown to be more powerful than earlier GNNs as it learns the same representation for

∗Contact Author

NeurIPS 2021 Competition - Machine Learning for Combinatorial Optimization (ML4CO).

Instance observation

GIN ψ(V, E)

FPN(s, a) ϕ(τ)

. f(ψ · ϕ) cum. max
(s, a)-embedding

τ

τ -embedding

0

F−1
Z

1

τi τ̂i τi+1

0

F−1
Z

1

τi τ̂i τi+1

Figure 1: The neural architecture. Colored boxes contain trainable parameters. The blue elements are
trained against value loss and the orange FPN trained against fraction loss.

f ass
1,1 · · · f ass

1,B f ass
2,1 · · · f ass

I,B

f item
1 f item

2 · · · f item
I f bin

1 · · · f bin
B

Assignments

Items Bins

(a) fwkr
1

fwkr
2

...

fwkr
W

f job
1

f job
2

...

f job
J

f edge
1,1

f
edge

2,1

f edge2,J

f
edge

W
,2

f edge
W,J

Workers Jobs

(b)

Figure 2: Compact graph encodings of the entities in (a) item placement, (b) load balancing instances.

isomorphic graphs [4]. As we have edge features, we compute feature values according to the model
of Hu et al. [3]. For a graph G = (V, E) with vertices V and edges E , the output features f ′

i of a vertex
i ∈ V are computed as f ′

i = M
(
fi+

∑
j∈N (i) ReLU(fj+L(fj,i))

)
, where N (i) = {j : (i, j) ∈ E}

are the neighbors of i, and fj,i are the edge features. Trainable functions M and L are respectively: a
multi-layer perceptron, and a linear layer that transforms the dimensions of fj,i to those of fj .

The published FQF algorithm places no constraints to ensure that the output of the quantile value
network is always non-decreasing. We additionally constrain the distribution to be monotonic by
projecting the predicted returns per action through a cumulative maximum (cum. max) operation,
such that F−1

Zπ(s,a) = cum. maxτiF
−1
Zπ(s,a)(τi). Imposing monotonicity improved performance on a

related distributional algorithm [6]. The entire neural network is summarized in Figure 1.

Observations We use a custom observation function to extract salient features. For every variable
x, define its dynamic features F (x) = (F 1(x), . . . , F 11(x)) as a vector containing values extracted
from the state of the solver. F 1(x) = x is the value of the variable. F 2(x) = |⌈x⌉ − 0.5− x|
is the fractionality of the variable. F 3(x) = 1 if x is fractional and 0 otherwise. F 4(x) is the
reduced cost of x. F 5(x) and F 6(x) are the down and up pseudocost of x, F 7(x) and F 8(x) are the
counts of down or up branches on x, respectively. These represent how reliable the pseudocosts are.
F 9(x), F 10(x), F 11(x) contain a one-hot encoding of the basis status of x, having value 1 if at lower
bound, basic, or at upper bound respectively.

Typically, features of the variables and constraints of a MIP are encoded in what we call the MIP
graph. The MIP graph is bipartite with vertices representing variables on one side and constraints on
the other, each with their relevant features. This encoding is applicable to any MIP problem but its
drawback is its size: it has one vertex for every variable and constraint. For the known instances, we
develop compact encodings containing only features of the objects in the problem definition (i.e.,
items, bins, workers), instead of features of the MIP model. The smaller representation has several
advantages over the MIP graph. Firstly, because the neural network is relieved from learning the
constraints explicitly and instead learns a compressed approximation of the constraints, a smaller
size becomes possible, ultimately leading to faster training. Secondly, this direct approach eases the
need to learn a MIP solver. For example, different bases (selections of independent columns in the
model, represented through features 9–11) can correspond to the same solution, which would have to
be learned if learning on the formulation. This is clearly a monumental task. Thirdly, as researchers
better understand the problem and develop improved models after the competition ends, this encoding
remains valid as it is architecture independent. The graph encoding the instance data and the solver
state for the two problem classes are presented in Figure 2.

Transition model The original MDP defined by the competition environment presents a partially
observable view into the MIP solver, where each state observation corresponds to the current node
being solved. As MIP solvers typically use a best-first node selection rule to determine the next node
to branch in, the next state is frequently not a child of the current node, making the original transition

2

1
2 3

4 5 6

(a) Branch-and-bound tree.

1 2 3 4 5 6

+1 +1 +1 +1 +1

(b) Original MDP for (a), with reward
following global bound change.

3) Frac. penalty:
2) Integral node:
1) Dual bound:

1 2 4

-2
0
1

-2
0
2

3 6

-1
1
3

(c) Artificial MDPs for (a), together with
our three proposed reward functions.

Figure 3: An example of the artificial MDPs derived from the original MDP. The number within each
node is its dual bound and, if using best-first node selection, it is also the ordering of the solved nodes.
The original MDP follows this ordering until all nodes encountered, rewarding the agent with the
change to global dual bound per step, which together with the solve time defines the dual integral
reward function used to rank entrants in the competition.

function a complex interaction between the agent-controlled branching rule and the solver-controlled
node selection rule. See for example nodes 5 and 6 in Figure 3a, which are far apart in the branch-and-
bound tree, but consecutive states in the original MDP. To make the impact of decisions more directly
related to the branching outcome, we record training experiences as if they came from an artificial
MDP (Figure 3c) in which the next state corresponds to the child node with the worst (lowest) dual
bound. When a node has no further children, this node is considered to terminate the artificial episode.
Experiences from this artificial MDP are constructed by transforming entire episodes drawn from
original MDP; we do not change the environment itself.

Reward Functions We test three reward functions (RFs) for this artificial MDP, as shown in
Figure 3c: 1) Dual bound RF is the difference between the dual bound of the current node and the
worst dual bound of its two children. This reward signal drives the agent to produce child nodes with
higher dual bounds. 2) Integral node RF rewards the agent with value 1 for taking actions leading to
integral or infeasible nodes (i.e., leaves). 3) Fractional node penalty RF penalizes each fractional
child by -1, resulting in reward 0 only if both children are leaves. Both 2) and 3) lead the agent to
generate small subtrees, indirectly improving the global dual bound. Eventually, half the nodes (the
leaves) of the branch-and-bound tree are integral or infeasible, resulting in high rewards. However,
at the start the majority of nodes are fractional, resulting in a sparse reward function that may be
difficult to learn, especially when solving time limits are imposed. Preliminary experiments indicated
3) performs best and hence it is used in our competition entry.

Exploration Strategies While ϵ-greedy exploration effectively solves RL problems with simple
action spaces, it is unlikely to be sufficient in learning to branch because of the huge action set
of fractional variables. However, FQF is an off-policy algorithm, meaning that it can learn from
experiences that do not match the current policy’s choices. We exploit this fact by using random
branching and reliability pseudocost branching to generate examples to fill the replay buffer, in
addition to the typical ϵ-greedy exploration strategy. Upon starting a new episode (i.e., solving a new
instance), one of these three exploration strategies is chosen uniformly at random.

Efficient Policy Execution The forward pass of the neural network can be a time-consuming
operation. Preliminary experiments suggest that caching the results of calling the neural network and
reusing these outputs at alternating depths in the branch-and-bound tree achieves better performance.

3 Experimental Evaluation and Conclusions

Our training code is implemented using PyTorch 1.9.1 and the GNN library from PyTorch Geomet-
ric 1.7.2. The training code uses 1 training thread, 30 threads for exploring the environment and
generating training data, and 20 threads for scoring the latest policy against the incumbent policy on
a few evaluation instances. We trained the algorithm for four weeks for the competition, on a 64-core,
8 A100 GPU Nvidia DGX server; we used the competition-suggested training/validation split.

Comparison of Branching Rules Table 1a compares the dual integral and the optimality gap,
averaged over the test instances, of the Learned branching rule against the state of the art (Reliability)
and the naïve baselines Random and Most Fractional branching rules.

The Learned branching rule clearly outperforms the state of the art for the Item Placement problem.
The ranking of the three established algorithms also corroborate well-known results [1]. For the load

3

Table 1: Average dual integral and optimality gap of a) branching rule with percentage difference to
reliability branching, and b) configuration with percentage difference to the full algorithm. All results
are calculated using the same best-known primal bound provided by the competition organizers.

a) evaluation Item Placement Load Balancing

Dual Integral Gap Dual Integral Gap

Reliability 4025 55% 6923 1.2%
Most Fractional 6049 (+50%) 76% (+37%) 6158 (-11%) 0.9% (-21%)
Random 6083 (+51%) 77% (+38%) 6197 (-10%) 0.9% (-22%)
Learned 2643 (-34%) 44% (-21%) 5823 (-16%) 0.8% (-30%)

b) ablation Item Placement Load Balancing

Dual Integral Gap Dual Integral Gap

Full 3324 51% 5660 0.8%
Original MDP 4812 (+45%) 65% (+27%) 6023 (+6%) 0.8% (+10%)
Dual bound RF 4519 (+36%) 61% (+20%) 5906 (+4%) 0.8% (+3%)
Integral node RF 3602 (+8%) 53% (+4%) 6091 (+8%) 0.8% (+10%)
Call every depth 3677 (+11%) 53% (+3%) 5778 (+2%) 0.8% (+4%)
MIP graph 3995 (+20%) 55% (+8%) 5856 (+3%) 1.1% (+49%)
Non-monotonic FQF 3632 (+9%) 53% (+5%) 5839 (+3%) 0.8% (+8%)

balancing problem, Reliability is outperformed by Random, itself outperformed by Learned, which
suggests that this problem exhibits properties not correctly exploited by the state of the art.

Ablation Study Table 1b shows the impact of removing individual components from the full
training and execution algorithm. For this ablation study, every variant is trained for one week.
These results indicate that all components contribute to the performance of the learned branching
rule. Training on the original MDP or using the full MIP graph observation degrades performance
most significantly, the second observation potentially explaining the large discrepancy between our
position on Anonymous (13th) and the other domains (3rd). The two reward functions that drive the
agent towards smaller branch-and-bound trees (the integral node RF and the fractional node penalty
RF in Full) also have a large impact on performance.

Conclusions This paper showed that a data-driven branching rule trained on instances from a single
problem class can outperform the state-of-the-art reliability pseudocost branching in MIP. However,
achieving this result required exploiting expert knowledge in MIP to customize the reinforcement
learning problem, rather than blindly training in the given environment.

Many avenues for future research directions are available. Due to the time constraints imposed by the
ML4CO competition, many of the design choices are chosen to be simple rather than high performing.
Many of the hyperparameters, including neural network sizes and the number of supports in the
approximated distribution of FQF, are arbitrarily chosen without tuning. Epsilon-greedy exploration
likely cannot cope with the large action space, requiring a more sophisticated exploration strategy.

References
[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations Research

Letters, 33(1):42 – 54, 2005.

[2] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning.
In 34th Intl. Conf. on Machine Learning, pages 693–711, 2017.

[3] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure Leskovec.
Strategies for pre-training graph neural networks. In Intl. Conf. on Learning Representations, 2020.

[4] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks? In
Intl. Conf. on Learning Representations (ICLR), 2019.

[5] Derek Yang, Li Zhao, Zichuan Lin, Tao Qin, Jiang Bian, and Tie-Yan Liu. Fully parameterized quantile
function for distributional reinforcement learning. In Neural Information Processing Systems 32, 2019.

[6] Fan Zhou, Zhoufan Zhu, Qi Kuang, and Liwen Zhang. Non-decreasing quantile function network with
efficient exploration for distributional reinforcement learning. In Intl. Joint Conf. on Artificial Intelligence,
pages 3455–3461, 2021.

4

	Introduction
	Solution Methodology
	Experimental Evaluation and Conclusions

