
Strong Regularization is All You Need
: Toward ML4CO Challenge

Seungjoon Park ∗

KAIST
sjoon.park@kaist.ac.kr

Minu Kim ∗

KAIST
minu.kim@kaist.ac.kr

Minchan Jeong
KAIST

mcjeong@kaist.ac.kr

Yejin Cho
Korea University

bethesunshine@korea.ac.kr

Mingyu Kim
KAIST

callingu@kaist.ac.kr

Abstract

Mixed Integer Linear Programming(MILP) is one of the representative branches of
non-convex combinatorial optimization problems, and includes various problem
types such as Traveling Salesman Problem(TSP) and Bin Packing Problem(BPP).
The branch-and-bound algorithm is a tree search-based algorithm for solving such
MILP problems, that gradually reduces the solution space by dividing a given MILP
problem into sub-MILPs. It is known that the branching variable selected at each
node of the branch-and-bound tree has an important effect on the performance of
the algorithm. In this study, we aim to approximate effectively a strong branching
policy, an expert strategy empirically known to perform best a priori, via an
imitation learning model. We expressed each MILP problem as a featured bipartite-
graph and imitation-learned the expert policy through GCNN. We confirmed that
applying strong weight decay in the learning process can significantly decrease the
time-dual integral bound.

1 Introduction

Among combinatorial optimzation problems, Mixed Integer Linear Programming(MILP) is a widely
adopted class of problem in many of the real-world domains such as industrial engineering, economics
and business. MILPs are known to be NP-complete. Hence, tree-search based algorithms are mainly
used to find the optimal solution of MILP instances. The branch-and-bound(B&B) algorithm is one
of such algorithms. It iteratively reduces the solution space in a search-tree (branch) to close the
primal-dual gap (bound).

It is well known that the choice of the branching variable selected at each node of the B&B tree has a
significant effect on the overall performance of the algorithm.[1] However, all existing branching
strategies were compared and analyzed based on a priori experimental results. For instance, strong
branching strategy – which greedily chooses a locally best branching variable after solving all
sub-MILPs of each child node – is generally known to make the smallest B&B search tree, but
requires an extensive amount of computation before each branching step. In case of pseudocost
branching strategy, it requires a relatively few number of operations within each branching step,
but its empirical quality of the branching underperforms that of the strong branching strategy.[1] In
general, the optimal branching strategy of the B&B is yet to be known. In fact, optimal branching
variable selection is NP-hard in the worst case, even at the root node of the B&B tree.[2]

∗Equal contribution

NeurIPS 2021 Competition - Machine Learning for Combinatorial Optimization (ML4CO).



Many of the recent studies attempt to learn existing branching policy using machine learning tech-
niques to reduce the operation costs and search for better branching policies. A stream of work
leverage graph convolutional neural network (GCNN) and imitation learning strategy for a variable
selection in B&B [3, 4, 5]. Encoding branching policies into a GCNN reduces the amount of manual
feature engineering. In continuation with these efforts, NeurIPS 2021 Competition: Machine Learn-
ing for Combinatorial Optimization(ML4CO) aims to replace the heuristic components in traditional
combinatorial problem solvers with machine learning techniques that achieves the lowest dual integral
over time. (Dual Task)

In this work, we propose a winning model of the NeurIPS 2021 ML4CO Competition. Our model is
primarily built upon the structure proposed by [3], a combinatorial optimizer based on GCNN with
behavior cloning. While fitting the model on three competition problem benchmarks, we addressed
several difficulties such as over-fitting and computation problem related to large instance. Our team
made the following contribution to arrive at a winning solution.

• Strong regularization
The strong regularization encourages the policy to explore various action candidates. It aims
to filter a prospective action set rather than picking the most probable one. It suggests solely
using experts such as strong branching may not be enough.

• Generalization of the learned policies
Our team observed that the model trained from a problem benchmark could be used for
another benchmark when they have similar training and test constraint structures. We
illustrate the applicability of our model trained on [item placement benchmark] to the [load
balancing benchmark].

In section 2, we will introduce our detailed approach and resulting rewards on each problem bench-
mark (item placement, load balancing, and anonymous tasks). Further discussions and analyses will
be covered in section 3.

2 Benchmarks

2.1 Evaluation Metric

We competed at the dual-task, of which the objective is to minimize the dual integral defined as
follows. (See 1) In the definition of the dual-integral, T denotes time limit, cTx∗ denotes optimal
solution and z∗t denotes the best dual bound at time t which is depending on our learned policy.
However, our tables do not include dual bound; instead, they include the average cumulative reward of
the instances in the evaluation set. The cumulative reward is defined as

∫ T

t=0
z∗t dt, the negated version

of the dual-integral without T cTx∗. Because T cTx∗is an instance-specific constant that depends on
the optimal solution, maximizing cumulative reward is equivalent to minimizing dual-integral.

T cTx∗ −
∫ T

t=0

z∗t dt (1)

2.2 Evaluation Method

To evaluate our results, we used a single GeForce RTX 2080ti and RTX 1080ti. Moreover, we used
our own evaluation pipeline, which is different from the official evaluation pipeline. To start with, we
did not use the whole evaluation set. Instead, the evaluation was conducted using only 50 evaluation
instances, of which a last index is an even number. In addition, because the official evaluation pipeline
using 15 minutes as a time limit per instance is too long to test many candidate models, we used a
1-minute time limit for each instance. Secondly, there is inconsistency even in the average reward of
the same model. As the evaluation metric depends on time, it is also dependent on the machine’s
processing speed. Because we tried and evaluated the various methods in different devices, we
inevitably split the table according to the devices where we assessed the methods.

2



2.3 Experimental Details

2.3.1 Item Placement and Load Balancing Task

In Table 1, we compare three models, Baseline, Weight Decay, Finetuning. The baseline is the model
proposed in [3] which uses the GCNN layer to integrate the knowledge of constraints, variables, and
edges. The weight decay model has the same structure as the baseline model and is trained with
the weight decay. The finetuning models are initialized using the pretrained weights of the weight
decay models. After that, we froze up to the GCNN layers and trained only the classifier for eight
epochs using the baseline setting to construct the finetuning model. The finetuning models outperform
baseline models and weight decay models. In Addition, a standard deviation of the finetuning model
is larger than that of the Baseline model. We observed that the finetuning model gets a higher reward
than the others when the initial lower bound of the instance is high. Likewise, the finetuning model
gets a lower reward than the others when the initial lower bound of the instance is low. In conclusion,
we conjecture that strong regularization on the GCNN layer helps the agent work well in instances
with a higher chance of high reward.

Table 1: Average reward of finetuning, weight decay and baseline models on the item placement task.
Bold entries indicates the submitted model.

Baseline Weight Decay Finetuning
(λ = 0.9) (λ = 0.9) (λ = 1.5)

Avg. Reward 265.427 292.733 330.182 320.139
Max. Reward 899.452 948.370 1345.099 1395.967
Min. Reward 21.9330 0.0009 0.0009 0.0009
Std 194.647 258.326 301.590 304.903

Table 2: Average reward of combined models, weight decay and baseline models on the item
placement task. Bold entries indicates the best results.

Baseline Weight Decay Finetuning Combined Models

All node features 287.244 - 362.599 370.790
Pseudo Cost 270.777 201.541 - 365.067

We investigate which features are crucial information for determining the reward. (See Table 2). The
combined model uses either a baseline or a finetuning model depending on the initial lower bound of
the instance. Using a kind of additional heuristic to select which model to be used, the combined
model is the best among the models we tested. All node features use all given features to train the
model. Pseudo Cost uses pseudo cost only as a feature.

Regarding the load balancing task, we could not train the model in our device. In the case of the load
balancing task, a problem is too huge to handle in our device. (See Figure 1) Therefore we reuse
the best finetuning model trained on the item placement task for the load balancing task without any
fine-tuning.

2.3.2 Anonymous Task

We used a baseline model as provided in [3] for the anonymous task. The baseline model outperforms
any of the simple models using pseudo cost observations provided in the Ecole library, and their
finetuning variants. (See Table 3.) Unlike as in the Item Placement and Load Balancing tasks, neither
the strong regularization nor the pre-trained transferred model from the Item Placement task worked
better than the baseline model trained in this problem set. (See Table 4.) Further observations are to
be dealt in section 3.

3



Table 3: Average reward of finetuning, weight decay and baseline models on the anonymous task
Bold entries indicates the submitted model.

Baseline Pseudocost
pseudo cost only with scaled age + λ = 0.1 λ = 1

1.903 1.902 1.849 1.839
Reward scale = 106

Table 4: Strong regularization does not properly perform in the Anonymous task. Two baseline
models are trained on the Anonymous benchmark data, with (Baseline) or without (WD) strong
regularization, respectively. The last model (Item Placement) simply uses the trained weights from
the Item Placement benchmark (λ = 0.9) as done in Load Balancing task. The average, maximum,
and minimum rewards from 50 instances for each models are listed.

Baseline WD (λ = 0.9) Item Placement
Avg. Reward 1.341 1.104 1.274
Max. Reward 7.160 7.164 7.159
Min. Reward 0.111 0.110 0.110
Reward scale = 106

3 Discussion

While regularization with the value of λ at around 5 × 10−4 is known to increase the models’
generalization capability, little is known about the effect of the strong regularization. In this section,
we attempt to briefly analyze its effect in different problem benchmarks.

Overall, strong regularization seems to improve the performance of the models when the data are
sampled from problem-specific distributions. We have already observed that λ ≥ 0.9 works well
in Item Placement and Load Balancing tasks. However, this is not the case in the Anonymous task,
where the problems are sampled from multiple distributions. (See Figure 1 and Table 4.)

Interestingly, the strong regularization improves the average reward, albeit decreases significantly the
expert imitation accuracy. Figure 2 provides visualized data of the average reward and the imitation
accuracy for different models in the Item Placement task. For problem distributions with high
homogeneity, it seems that the expert imitation capability has little or no relation with the average
reward. It is possible that strong regularization strengthens the effect of few important parameters of
the model, whereas ignoring all other parameters to decrease the imitation capability. Such strategy
may work well in general for some problem-specific data distributions with high homogeneity, but is
expected to show less performance in heterogeneous data-independent problem distributions, as very
few parameters are trained and utilized. This hypothesis coincides our observation as in Table 4 and
Figure 2.

4 Conclusion

In this work, we have used strong regularization with λ = 0.9 on the baseline model of [3] to
improve the performance in specific problem benchmarks. Its performance can be further improved
by finetuning the final classifier layers in the baseline settings. While it is still open to question how
strong regularization enhances the model performance in certain problem benchmarks, it is clear
that the expert imitation accuracy does not significantly contribute to the model performance. This
suggests the importance of exploring new branching policies that are yet to be known.

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning &
Evaluation (IITP) grant funded by the Korea government (MSIT) [No.2019–0–00075, Artificial

4



Figure 1: Sparsity plot of constraints for different problem benchmarks. Sparsity plots for
100 instances of constraint matrices of Item Placement task (a) and Load Balancing task (b) are
overlapped with gray marks, together with a sparsity plot of a single instance via light blue marks.
The constraint matrices for each instances are nearly identical within the two problem benchmarks.
Four randomly chosen sparsity plots(training instances 85, 2, 41, 17 of Anonymous data) of the
constraints in Anonymous task are given in (c)-(f). The Anonymous task includes a wider variety of
problem from multiple heterogeneous distributions.

Intelligence Graduate School Program (KAIST)] and [No. 2021–0–00907, Development of Adaptive
and Lightweight Edge-Collaborative Analysis Technology for Enabling Proactively Immediate
Response and Rapid Learning].

References
[1] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited. Operations

Research Letters, 33(1):42–54, 2005.

[2] Paolo Liberatore. On the complexity of choosing the branching literal in dpll. Artificial intelli-
gence, 116(1-2):315–326, 2000.

[3] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
combinatorial optimization with graph convolutional neural networks. In NeurIPS, 2019.

[4] Hanjun Dai, Elias B. Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
optimization algorithms over graphs. In NeurIPS, 2018.

[5] Gil Lederman, Markus N. Rabe, Edward A. Lee, and Sanjit A. Seshia. Learning heuristics for
automated reasoning through reinforcement learning. In ICLR, 2018.

5



Figure 2: Average rewards, imitation accuracy, and logit distribution of a single action set for
Item Placement tasks in different models. Average reward and the accuracy with respect to the
expert for different models are given in (a). The model with highest average reward is depicted with a
blue mark. Given below is the distribution of logit values (i.e. log-odds) of an action set (within a
randomly chosen single step) for Baseline model (b) and Weight Decay (λ = 0.9) model (c). The
logit values of Weight Decay model (c) are densely packed around the same value, resembling a
random decision. However, the accuracy with respect to the expert is tenfold higher than that of the
random policy.

6


	Introduction
	Benchmarks
	Evaluation Metric
	Evaluation Method
	Experimental Details
	Item Placement and Load Balancing Task
	Anonymous Task


	Discussion
	Conclusion

