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Abstract

The 2021 NeurIPS Machine Learning for Combinatorial Optimization (ML4CO)
competition was designed with the goal of improving state-of-the-art combinatorial
optimization solvers by replacing key heuristic components with machine learning
models. The competition’s main scientific question was the following: is ma-
chine learning a viable option for improving traditional combinatorial optimization
solvers on specific problem distributions, when historical data is available? This
was motivated by the fact that in many practical scenarios, the data changes only
slightly between the repetitions of a combinatorial optimization problem, and this
is an area where machine learning models are particularly powerful at.
This paper summarizes the solution and lessons learned by the Huawei EI-OROAS
team in the dual task of the competition. The submission of our team achieved the
second place in the final ranking, with a very close distance to the first spot. In
addition, our solution was ranked first consistently for several weekly leaderboard
updates before the final evaluation. We provide insights gained from a large number
of experiments, and argue that a simple Graph Convolutional Neural Network
(GCNNs) can achieve state-of-the-art results if trained and tuned properly.

1 Introduction

Combinatorial optimization has a wide range of applications in our day-to-day lives. Examples
include: retail, manufacturing, data center management, energy systems, airline scheduling, auction
design, political districting, kidney exchange, scientific discovery, ridesharing, cancer therapeutics,
conservation planning, disaster response, and or even in college admission [6; 19]. Due to its
importance, it has been under extensive research and explorations especially in computer science and
mathematics. This has resulted in hundreds of research papers and many successful commercial and
open-source solvers available to use [8; 11; 16; 1; 12; 7].

While most combinatorial optimization solvers are presented as general-purpose, one-size-fits-all
algorithms, the NeurIPS 2021 ML4CO competition focuses on the design of application-specific
algorithms from historical data [10]. This general problem captures a highly practical scenario
relevant to many application areas, where a practitioner repeatedly solves problem instances from a
specific distribution, with redundant patterns and characteristics. For example, managing a large-scale
energy distribution network requires solving very similar CO problems on a daily basis, with a fixed
power grid structure while only the demand changes over time. This change of demand is hard to
capture by hand-engineered expert rules, and ML-enhanced approaches offer a possible solution to
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detect typical patterns in the demand history. Other examples include crew scheduling problems
that have to be solved daily or weekly with minor variations, or vehicle routing where the traffic
conditions change over time, but the overall transportation network does not.

The ML4CO competition [10] features three challenges for ML, each corresponding to a specific
control task arising in the open-source solver SCIP [12], and exposed through a unified OpenAI-gym
API based on the Python library Ecole [9]. For each challenge, participants were evaluated on three
problem benchmarks originating from diverse application areas, each represented as a collection of
mixed-integer linear program (MILP) instances.

This paper summarizes the solution and lessons learned by the EI-OROAS team in the dual task of
the competition. The submission of our team achieved the second place in the final ranking, with a
very close distance to the first spot. In addition, our solution was ranked first consistently for several
weekly leaderboard updates before the final evaluation. We provide insights gained from a large
number of experiments, and argue that a simple Graph Convolutional Neural Network (GCNNs) can
achieve state-of-the-art results if trained and tuned properly, on the right data. In addition, we provide
a series of remarks and guidelines which we believe will be useful for practitioners to pay attention
to, in order to get to the full potential of their NN models used for combinatorial optimization.

2 Background

Most combinatorial optimization problems in practice can be written as mixed-integer linear programs
(MILP). Branch-and-bound (B&B) algorithm [20] is an exact method for solving MILPs. When
interrupted before termination (or completion), B&B can provide intermediate solutions along with
optimality bounds (even without actually knowing the optimal values) [20; 13]. This algorithm
builds a solution tree and recursively selects variables for branching (LP relaxation). This process
was traditionally done with highly tuned hard-coded heuristics, however, over the past several years
several machine learning (ML) approaches are also emerging [13; 14; 22; 26; 17]. The idea is that
for repetitive type of problems such as production planning, one may be able to use an ML model for
processes such as variable selection (a.k.a. branching), in order to minimize the total solving time of
MILP instances.

A mixed-integer linear program (MILP) can be expressed as follows:

argmin
x

c>x

s.t. Ax ≤ b, l ≤ x ≤ u, x ∈ Zp × Rn−p, (1)

where c ∈ Rn is the objective coefficient vector, A ∈ Rm×n is the constraint coefficient matrix,
b ∈ Rm, l,u ∈ Rn, and p ≤ n is the number of integer variables. Moreover, m is the number of
rows and n refers to the number of columns.

Relaxing the integrality constraint turns the problem into a linear program (LP) which can be solved
(e.g. via the simplex algorithm) to obtain a lower bound to (1). Solution to the LP relaxation will
be also a solution to (1), assuming it still respects the original integrality constraint. Otherwise, two
sub-problems can be created on the two sides (floor and ceil) of an integer variable. This binary
decomposition is repeatedly done via the branch-and-bound algorithms.

Fractional variable selection in branch-and-bound can be done in different ways. These methods will
have a different impact on the size of the B&B tree, and therefore in the speed and performance of a
solver [3]. Example methods include:

• strong branching (SB) [5]: results in smallest search tree but may be slow on iterations, as it
will have to solve two LPs for each branching candidate.

• pseudo-cost: estimates the branching effect based on variable history [25]
• hybrid: to perform SB at the beginning and slowly switch to pseudo-cost or other simpler

heuristics [14; 2]

Machine learning based solutions treat the variable selection and branching processes as a markov
decision process, and try to employ learning algorithms as a replacement for conventional branching
rules. Next we will briefly mention some of these ML-based strategies.
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Figure 1: A demonstration of the B&B
variable selection. Left: a node is se-
lected by the solver to be branched in the
next iteration. Right: a new state formed.
Visualization from [13].

3 Related Work

Earlier works include methods that try to learn to mimic the strong branching rule. [4] defines
a regression problem (predicting the SB scores) while [15; 18] approach it as a ranking problem
(predicting the order of the candidates). [13] models the branching as a classification problem were
labels are branching decisions from the SB rule. This GCNN-based approach for the first time
reported results better than a solver (SCIP) that uses presolving, primal heuristics, and cuts. Later,
[23] built on the GCNN method by incorporating an ADMM-based expert to scale-up the full strong
branching to large instances. Other works include [26] where authors show that using the entire B&B
tree can further boost the imitation learning, or [14] where the imitation learning was made faster by
switching to a small MLP after the root node of the tree.

Our solution employs the GCNN approach of [13]. In particular, we show that the inherent incorpo-
ration of graph convolutional neural networks for this problem is a suitable choice and with proper
tuning and training on suitable training data, it can still achieve state-of-the-art results.

4 The ML4CO Competition

Challenges: There are three distinct challenges, each corresponding to a specific control task
arising in traditional solvers: primal, dual, and configuration. This article discusses the details of
the submission by the Huawei EI-OROAS team on the dual task, that is about selecting branching
variables, in order to minimize the dual integral over time.

The dual task: The dual task deals with obtaining tight optimality guarantees (dual bounds) via
branching [10]. Making good branching decisions is regarded as a critical component of modern
branch-and-bound solvers, yet has received little theoretical understanding to this day [21]. In this
task, the environment will run a full-fledged branch-and-cut algorithm with SCIP, and the participants
will only control the solver’s branching decisions. The metric of interest is the dual integral, which
considers the speed at which the dual bound increases over time (See Figure 2). Also, all primal
heuristics will be deactivated, so that the focus is only on proving optimality via branching.

Environment: Environment is a traditional branch-and-bound algorithm. The solver stops after
each node is processed (LP solved), receives a branching decision, performs branching, and selects
the next open node to process. The solver remains in the SOLVING stage until the episode terminates
(time limit of 15 minutes reached, or when the problem is solved). Action is one of the current node’s
branching candidates (non-fixed integer variables). Only single-variable branching is allowed.

Dual integral: This objective measures the area over the curve of the solver’s dual bound (a.k.a.
global lower bound), which usually corresponds to a solution of a valid relaxation of the MILP. By
branching, the LP relaxations corresponding to the branch-and-bound tree leaves get tightened, and
the dual bound increases over time. With a time limit T , the dual integral expresses as:

Tcᵀx? −
∫ T

t=0

z?t dt (2)

where z?t is the best dual bound at time t, and Tcᵀx? is an instance-specific constant that depends on
the optimal solution value cᵀx?. The dual integral is to be minimized and takes an optimal value of 0.
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Figure 2: Primal and dual bounds evolution vs solving time. Image from [10]

Datasets: There are three problem benchmarks from diverse application areas. A problem bench-
mark consists in a collection of mixed-integer linear program (MILP) instances in the standard MPS
file format. The first two problem benchmarks are inspired by real-life applications of large-scale
systems at Google, while the third benchmark is an anonymous problem inspired by a real-world,
large-scale industrial application [10].

• Problem benchmark 1: Balanced Item Placement. This problem deals with spreading items
(e.g., files or processes) across containers (e.g., disks or machines) utilizing them evenly.
Items can have multiple copies, but at most, one copy can be placed in a single bin. The
number of items that can be moved is constrained, modeling the real-life situation of a live
system for which some placement already exists. Each problem instance is modeled as a
MILP, using a multi-dimensional multi-knapsack formulation. This dataset contains 10000
training instances (pre-split into 9900 train and 100 valid instances).

• Problem benchmark 2: Workload Apportionment. This problem deals with apportioning
workloads (e.g., data streams) across as few workers (e.g., servers) as possible. The
apportionment is required to be robust to any one worker’s failure. Each instance problem
is modeled as a MILP, using a bin-packing with apportionment formulation. This dataset
contains 10000 training instances (pre-split into 9900 train and 100 valid instances).

• Problem benchmark 3: Anonymous Problem. The MILP instances corresponding to this
benchmark are assembled from a public dataset, whose origin is kept secret to prevent cheat-
ing. Reverse-engineering for the purpose of recovering the test set is explicitly forbidden.
This dataset contains 118 training instances (pre-split into 98 train and 20 valid instances).

5 Our Solution

In this section, we first provide an overview of the Graph Convolutional Neural Network approach
adopted from [13], then we provide results of our experiments, ablations, and insights around them.

5.1 Graph Convolutional Neural Network (GCNN)

The GCNN approach introduced in [13] adopts an imitation learning approach to learn a fast approxi-
mation of strong branching (SB). This method models the branching policy as a graph convolutional
neural network (GCNN), that in turn allows to leverage the bipartite graph representation of MILP
problems. In this setting, a classification model is trained to predict the branching variable selection
of the SB agent, hence the training loss function can be the softmax with cross-entropy.
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Figure 3: Left: bipartite state representation st = (G,C,E,V) with n = 3 variables and m = 2 con-
straints. Right: bipartite GCNN architecture for parametrizing the imitation policy π. Visualization
from [13].

Figure 3 shows the bipartite representation model adopted in the GCNN approach. In this figure, node
and edge features are denoted by (G,C,E,V). Moreover, C ∈ Rm×c, V ∈ Rn×d, E ∈ Rm×n×e
respectively refer to constraints features (one per row), variable features (one per column), and edge
features (sparse tensor). Table 1 further shows the details of the features incorporated.

The GCNN approach utilizes two interleaved convolutions, one from variables to constraints and one
from constraints to variables. In addition, the neural network used incorporates relu activations as
well as prenorm layers.

Table 1: Constraints, edges, and variables features used in st = (G,C,E,V); adopted from [13].

Tensor Feature Description

C

obj_cos_sim Cosine similarity with objective.

bias Bias value, normalized with constraint coefficients.

is_tight Tightness indicator in LP solution.

dualsol_val Dual solution value, normalized.

age LP age, normalized with total number of LPs.

E coef Constraint coefficient, normalized per constraint.

V

type Type (binary, integer, impl. integer, continuous) as a one-hot encoding.

coef Objective coefficient, normalized.

has_lb Lower bound indicator.

has_ub Upper bound indicator.

sol_is_at_lb Solution value equals lower bound.

sol_is_at_ub Solution value equals upper bound.

sol_frac Solution value fractionality.

basis_status Simplex basis status (lower, basic, upper, zero) as a one-hot encoding.

reduced_cost Reduced cost, normalized.

age LP age, normalized.

sol_val Solution value.

inc_val Value in incumbent.

avg_inc_val Average value in incumbents.
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5.2 Results

5.2.1 Results of variable selection (classification accuracy)

Table 2 shows the accuracy of the classification task over a number of different experiments on
the item-placement dataset. In each one of these experiments, we generated a training dataset by
recording the states of the MILP branching and forming a classification problem from the variable
selection. Therefore, one can use different environment settings to generate different training samples
set. These settings may include: time-limit to solve or terminate (in training), probability of strong
branching (to use SB only on a portion of samples and pseudo-cost on the rest), number of training
samples recorded (we can keep generating samples until a desired count is reached), etc.

We can see in Table 2 that in general models with higher top-k classification accuracy are somehow
correlated with higher overall reward (better dual integral hence convergence), however, this rela-
tionship is not linear and thus better top-1 does not guarantee a better reward. Moreover, it is worth
noting that the load-balancing and anonymous datasets also demonstrate a similar behavior, further
reinforcing the conclusion made (results omitted for brevity).

Remark #1: Top-1 accuracy is not enough. One needs to always check the final reward over the
evaluation set (validation or test). It is also worth noting that in addition to the reward evaluated here
(i.e. dual integral), there are other classical benchmarking metrics such as: “1) shifted geometric
mean of the solving times in seconds, including running times of unsolved instances without extra
penalization (Time); 2) the hardware-independent final node counts of instances that are solved by all
baselines (Nodes); and 3) the number of times each branching policy results in the fastest solving
time, over the number of instances solved (Win)” [13].

Table 2: Classification accuracy for various experiments on the item-placement validation set.

Method Time-Limit P of SB Top-1 (%) Avg. Accumulated Reward
FSB 15 min 1.0 - 3771

Reliable Branching 15 min - - 3506
GCNN 1 min 1.0 93.9 6663
GCNN 15 min 1.0 98.6 6638
GCNN 60 min 1.0 98.9 6669
GCNN 600 min 1.0 99.3 6449
GCNN? 15 min 0.001 67.2 7221

? Refers to our best result, which will be explained later.

5.2.2 GCNN results on the validation set

Table 3 shows the results of our best trained models over the validation set problems of the three
datasets. The evaluation time-limit is 15 minutes and the same setting as the test evaluations are used.
Since there are 100 MILPs in the evaluation set, it takes around 24 hours for a complete evaluation
on the validation set MILP instances (for the Anonymous dataset there are only 20 validation MILPs
but as outlined in the competition we run them 5 times with different seeds).

For training, we used a batch size of 64 for the Item-Placement and Anonymous datasets and a batch
of size 32 for the Load-Balancing (since it has larger problems that occupy more GPU memory). We
trained on servers with 8×V100 GPUs with 32GB memory, for 50 epochs. We utilized an Adam
optimizer with learning rate of 0.001, decay on plateau (10 epochs) and early termination of 20
epochs of non-decreasing loss. Training samples set size is 100K for Item-Placement and Anonymous
datasets, but only 20K for the Load-Balancing dataset as data collection is slower for this dataset.

Table 3: GCNN results on the validation set MILPs.

Dataset Data Size
(Train-Val)

Embedding
Dimension

Time
Limit P of SB Top-1

(%) Reward

Item-Placement 100K-1K 8 15 min 0.001 67.2 7221
Load-Balancing 20K-1K 64 1 min 0.01 8.0 625363

Anonymous 100K-1K 64 15 min 1.0 41.6 32517856
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5.2.3 Full test set evaluation results

Table 4-6 show the final test results of the competition, among all the submissions for the dual
task. Our submission is “EI-OROAS”. The models used for generating Table 3 were used in this
submission. It can be observed that the top two submissions are very close. GCNN achieves top rank
on the Load-Balancing dataset and rank 2 with a small margin on the Item-Placement dataset. It is
also worth noting that after the competition deadline, we were able to achieve even better results on
these two datasets. Also, in Table 4 we only show the top 10 best results, out of the overall 23 teams
[10]. Table 7 shows the average ranks over the three datasets.

Remark #2: GCNN results are strong. This means even though there have been papers published
after the original GCNN paper [13], proper tuning can still keep GCNN performance on top.

Remark #3: An interesting observation is that there are 16 different teams in the top 10 rewards of
three datasets. This means unique team solutions were not able to achieve equally good results on
different datasets, suggesting data-dependent solutions may on average be the way to go. That being
said, our GCNN results are strong across all datasets, proving GCNNs are promising for these tasks.

Table 4: Item-Placement top 10 test rewards from the competition website [10].

Team Name Reward Rank
Nuri 6684.0 1

EI-OROAS 6670.3 2
EFPP 6487.53 3
lxj24 6443.55 4
ark 6419.91 5
qqy 6377.23 6

KAIST_OSI 6196.56 7
nf-lzg 6077.72 8

Superfly 6024.20 9
Monkey 5978.65 10

Table 5: Load-Balancing top 10 test rewards from the competition website [10].

Team Name Reward Rank
EI-OROAS 631744.31 1
KAIST_OSI 631410.58 2

EFPP 631365.02 3
DaShun 630898.25 4

blueterrier 630826.33 5
Nuri 630787.18 6

gentlemenML4CO 630752.94 7
comeon 630750.66 8
Superfly 630746.96 9
Monkey 630737.85 10

Table 6: Anonymous top 10 test rewards from the competition website [10].

Team Name Reward Rank
Nuri 27810782.42 1
qqy 27221499.03 2

null_ 27184089.51 3
EI-OROAS 27158442.74 4

DaShun 27151426.15 5
KEP-UNIST 27085394.46 6

lxj24 27052321.48 7
THUML-RL 26824014.00 8
KAIST_OSI 26626410.86 9

Superfly 26373350.99 10
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Table 7: Average ranks over the three datasets for top 10 teams in the ML4CO competition [10].

Team Name Rank Multiplication Average Rank
EI-OROAS 8 2.33

Nuri 6 2.67
KAIST_OSI 126 6

EFPP 117 6.33
qqy 132 6.33

DaShun 280 7.67
Superfly 810 9.3

lxj24 532 10
comeon 1056 10.3
Monkey 1100 10.3

5.2.4 Partial test set evaluation results prior to the final evaluation

Throughout the ML4CO competition, leaderboard was updated on a weekly basis. GCNN results
were consistently strong throughout the competition timeline. Table 8 shows the last 4 weeks of
leaderboard updates for top 5 teams. Note that the evaluations were only on 25% of the final test set.

Table 8: Average ranks of the last 4 leaderboard updates over the three datasets.

Team Name Oct.04 Oct.08 Oct.15 Oct.23 Overall Average Rank
EI-OROAS 1 1.33 2.67 1.67 1.67

Nuri 2.33 4.33 3.67 3.67 3.5
KAIST_OSI 8.67 3.67 6.67 4.67 5.92

EFPP - - - 5 5
qqy 5.67 4.67 6.67 8 6.25

5.2.5 Inference speed and latency

Capacity of a neural network is generally related to its number of parameters. Bigger models with
a higher number of parameters usually lead to higher degrees of performance. For our problem of
variable selection however, choosing very large architectures will be counter-productive, as these
larger models come at a cost of slower inference. This means each classification within each solver
iteration is slower. Sometimes this may still lead to good reward values if being accurate is more
important; sometimes on the other hand speed may become a more important factor and we may be
able to tolerate a certain degree of classification error. This will also be data-dependent. Smaller
size problems may get solved faster, so it won’t make sense to use a large NN in this setting. For
harder/larger MILP instances however, it may be beneficial to choose a bigger model to push the
accuracy up. Table 9 shows the size and inference latency (averaged over 10000 runs) of the models
used in our final submission. As we can see from this table, Item-Placement dataset has clearly
benefited from a smaller swift model.

Remark #4: We need to carefully find a balance between NN accuracy and speed. Smaller models
tend to be less accurate on classification (variable selection), but because they are faster, overall they
lead to better solutions (closing the dual gap faster, as long as they can learn), hence higher rewards.

Table 9: DNN model size and inference latency (per node in milli-seconds on validation MILPs).

Dataset Embedding
Dimension

Model
Size

#
parameters

Inference
Latency

Top-1
(%) Reward

Item-Placement 8 20 KB 1264 0.12 67.2 7221
Load-Balancing 64 270 KB 63872 9.25 8.0 625363

Anonymous 64 270 KB 63872 0.74 41.6 32517856
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5.2.6 Training and evaluation time

Table 10 shows the time that takes to perform training for 50 epochs and evaluation on the 100
validation set MILPs on an 8-node V100 server. We can see that training is relatively fast, but
evaluation takes much longer due to the time-limit of 15 minutes that is used in the competition.

Table 10: Training and evaluation time (on validation set MILPs with 15 minutes solver time-limit)

Dataset # Training
MILPs

# Training
Samples

Training
Time (hr)

# Evaluation
MILPs

Evaluation
Time (hr)

Item-Placement 9.9K 100K ≈ 0.6 100 ≈ 25
Load-Balancing 9.9K 20K ≈ 1.2 100 ≈ 25

Anonymous 100 100K ≈ 0.84 20 ≈ 25

5.2.7 Significant variation in performance when using a same architecture but collecting
different training samples

Figure 4, 5, and 6 show scatter plots of validation MILPs reward versus the solving time-limit, data
size, and probability of strong branching, over a large number of experiments.

Remark #5: As observed, there is a significant variation in the validation reward when different
flavours of training samples are collected. This means one needs to investigate various kinds of
training samples settings in order to obtain the best policy.

Remark #6: Since we can collect different sets of training samples from a same set of MILP instances,
a fair comparison of different methods is only possible if the original MILP instances are provided.
This is the case in the ML4CO challenge. However, for problem instances such as Set Covering,
Combinatorial Auction, Capacitated Facility Location, or Maximum Independent Set type problems,
that are largely used in the research papers, often times it is not the case. We argue that generating
different training sample sets from say Set Covering problems can lead to different final reward
values. Therefore, we recommend to use a standard benchmark of MILP instances that are publicly
released for such kinds of performance evaluations (e.g. datasets used in the ML4CO challenge).

Figure 4: Validation reward in terms of solving time-limit, probability of strong branching, and
training sample size used in the data collection process for different experiments (item-placement).
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Figure 5: Validation reward in terms of solving time-limit, probability of strong branching, and
training sample size used in the data collection process for different experiments (load-balancing).

Figure 6: Validation reward in terms of solving time-limit, probability of strong branching, and
training sample size used in the data collection process for different experiments (anonymous).

5.2.8 The impact of the training sample set size

Figure 4, 5, and 6 show the impact of training sample set size in the overall reward for the three
datasets (see the color coding).

Remark #7: We observe that larger training set size does not necessarily result in a higher reward.
This is unlike the common intuition that more training data can reduce the over-fitting.

5.2.9 Top-1, Top-3, Top-5, and Top-10

As mentioned previously in this section, top-1 variable selection accuracy does not correlate well
with the overall reward. For example, a large model with high capacity, will likely achieve a high
top-1 classification accuracy, but if it gets too slow, it may end up hurting the final reward as it can do

10



Figure 7: Validation top-1, top-3, top-5, and top-10 versus the overall reward.

fewer number of iterations within a given time. Figure 7 demonstrates the reward-top-k scatter plot
for the validation sets over a large number of experiments. We observe that:

Remark #8: Top-5 and top-10 variable selection is in general very accurate, most of the times above
90%. This suggests that variable selection in the branch-and-bound tree is in general fairly accurate
with GCNNs, thus overall they show a strong performance compared to conventional heuristic rules.

5.2.10 Data-Centric AI for CO

A trend has recently been emerging in the AI community to design data-centric AI systems and
tools, as opposed to only model-centric approaches [24]. The idea is that the community has
focused highly on building new algorithms and models, however, in practice data drift results in
considerable mismatch between the training set and test/deployment environment. Based on the
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results of our experiments, we also conclude that data engineering plays an important role in the
combinatorial optimization learning approaches, and the community needs to pay equal attention to
both model/algorithm improvements and data engineering efforts.

5.2.11 Other thoughts

There are other ideas that we didn’t try due to lack of time and resources, including: a) applying
data augmentation, and b) employing multiple models. In terms of augmentation, it is important
to note that one needs to take into account the nature of the data that is on linear equations when
designing the augmentation operations. As for using multiple models, this idea comes from the
fact that when we applied a clustering algorithm on the anonymous dataset, it revealed 3 cluster of
problems, suggesting that training 3 separate GCNN models, one for each cluster of problems, may
lead to performance improvements. We leave these ideas for the interested readers to explore.

6 Conclusion

This paper summarizes the solution and lessons learned by the Huawei EI-OROAS team in the dual
task of the NeurIPS 2021 ML4CO competition. The submission of our team achieved the second place
in the final ranking, with a very close distance to the first spot. In addition, our solution was ranked
first consistently for several weekly leaderboard updates before the final evaluation. We provide
insights gained from a large number of experiments, and argue that a simple Graph Convolutional
Neural Network (GCNNs) can achieve state-of-the-art results if trained and tuned properly.
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