
Efficient Primal Heuristics for Mixed-Integer Linear
Programs

Akang Wang, Linxin Yang, Sha Lai, Xiaodong Luo
Shenzhen Research Institute of Big Data

Shenzhen, China
wangakang@sribd.cn, yanglinxin, laisha, xiaodongluo@cuhk.edu.cn

Xiang Zhou, Haohan Huang, Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan
Huawei GTS, China

zhouxiang60, huanghaohan, shaoshengcheng, zhuyuanming5@huawei.com
zhangdong48, quantao@huawei.com

Abstract

This paper is a short report about our work for the primal task in the Machine Learn-
ing for Combinatorial Optimization NeurIPS 2021 Competition. For each dataset
of our interest in the competition, we propose customized primal heuristic methods
to efficiently identify high-quality feasible solutions. The computational studies
demonstrate the superiority of our proposed approaches over the competitors’.

1 Introduction

Many combinatorial optimization problems can be modeled and solved via Mixed-integer linear
programming (MILP). As shown by (1), the MILP problem seeks for an assignment to continuous
and discrete decision variables (x and y, respectively) that are subject to linear constraints, with
the goal of minimizing a linear objective. A wide range of important applications in transportation,
manufacturing, and many other industrial domains can be formulated as MILP models. However,
solving those models to guaranteed optimality is generally NP-hard.

min
x,y

c⊤x+ d⊤y

s.t. Ax+By ≤ h

x ∈ Rn, y ∈ Zm

(1)

Various general-purpose primal heuristics have been developed to produce feasible solutions to MILP
problems. Among them, the simplest one is rounding heuristic, which rounds each fractional element
in a solution to its nearest integer. Although the rounding method is computationally cheap, it often
fails to identify feasible points. A more sophisticated idea is called feasibility pump [5, 2]. Briefly
speaking, feasibility pump iteratively calls a rounding step and a projection step to ensure that the
returned solutions satisfy integrality constraints and linear constraints, respectively. Usually, the
aforementioned heuristics could not produce solutions of high quality and thus are often employed
to construct the very first feasible solutions, while RINS [4], RENS [3], and other computationally
expensive primal heuristics are used for improving the incumbent solutions. These improvement
heuristics search for new incumbents within a neighborhood of some given feasible solutions.

In this work, we tackle a few problem-specific MILP formulations of our interest by utilizing classic
primal heuristics but in a more judicious manner, by exploiting the problem structures. We provide
problem definitions in Section 2 and our solution approaches in Section 3. Computational results are
summarized in Section 4. Finally, we conclude our work in Section 5.

NeurIPS 2021 Competition - Machine Learning for Combinatorial Optimization (ML4CO).

2 Problem definitions

The Machine Learning for Combinatorial Optimization (ML4CO) NeurIPS 2021 Competition [1]
focuses on the design of application-specific algorithms for solving MILP models. Specifically,
the primal task aims to identify high-quality incumbent solutions as fast as possible. For an MILP
instance of the form (1), as a primal algorithm proceeds, new improved solutions will be identified
and thus primal bounds are updated, as shown in Figure 1. The primal integral (the area of the shaded
region) is then used as the metric for evaluating different primal algorithms. Clearly, an algorithm
performing well will exhibit a small primal integral.

Figure 1: Primal bounds evolution versus solving time (adapted from [1])

There are three problem benchmarks in the ML4CO competition: item placement, load balancing,
and anonymous. The first two problem benchmarks are inspired by real-life applications of large-scale
systems at Google, while the third benchmark is an anonymous problem inspired by a real-world, large-
scale industrial application. There are 10, 000 instances for the first two benchmarks, respectively,
and 118 instances in the anonymous dataset, as training data. The competition encourages both
machine learning (ML) based algorithms and non-ML algorithms.

2.1 Item placement

This item placement problem deals with spreading items across multiple containers utilizing them
evenly. Let I denote the set of items and J denote the set of containers. Let a binary variable xij

be 1 if item i is placed in container j and 0 otherwise. Each item will be placed in exactly a single
container, as shown by constraints (3). Let K represent the set of dimensions. For dimension k ∈ K
of container j ∈ J , knapsack constraints (4) represent some physical considerations while (5) and (6)
properly account for the placement unevenness, which is penalized in the objective (2). The goal is to
identify an assignment for x, y, z such that constraints (3) – (8) are satisfied and the objective (2) is
minimized.

min
x,y,z

∑
j∈J

∑
k∈K

αkyjk +
∑
k∈K

βkzk (2)

s.t.
∑
j∈J

xij = 1 ∀i ∈ I (3)

∑
i∈I

aikxij ≤ bk ∀j ∈ J, ∀k ∈ K (4)

∑
i∈I

dikxij + yjk ≥ 1 ∀j ∈ J, ∀k ∈ K (5)

yjk ≤ zk ∀j ∈ J, ∀k ∈ K (6)
xij ∈ {0, 1} ∀i ∈ I, ∀j ∈ J (7)
yjk ≥ 0 ∀j ∈ J, ∀k ∈ K (8)

2

2.2 Load balancing

This problem deals with apportioning workloads across as few machines as possible. Let M and
N denote the set of tasks and the set of machines, respectively. For task i ∈ M , only a subset
of machines, denoted by N i ⊆ N , are accessible. Let a binary variable yj be 1 if machine j
is used and 0 otherwise. Let xij denote the amount of workload from task i to machine j, as
defined in constraints (10). Constraints (11) enforce the capacity requirement for each machine. The
apportionment is required to be robust to any one machine’s failure, as indicated by constraints (12).
The goal is to identify an assignment for x, y such that constraints (10) – (14) are satisfied and the
objective (9) is minimized.

min
x,y

∑
j∈N

yj (9)

s.t. xij ≤ aiyj ∀i ∈ M, ∀j ∈ N i (10)∑
i∈M :j∈Ni

xij ≤ bj ∀j ∈ N (11)

∑
j∈Ni\{j′}

xij ≥ ai ∀i ∈ M, ∀j′ ∈ N i (12)

yj ∈ {0, 1} ∀j ∈ N (13)

0 ≤ xij ≤ bj ∀i ∈ M, ∀j ∈ N i (14)

2.3 Anonymous

The concrete MILP formulation corresponding to this benchmark is not provided in the ML4CO
competition.

3 Solution approaches

3.1 Item placement

We analyze 10, 000 item placement instances and find out that

• |I| = 105, |J | = 10;
• aik, dik values of 5 items are significantly bigger than those of others.

Based on this empirical finding, we place the 5 big items into the first five containers respectively
before any primal heuristics are applied.

Meta-heuristics The item placement problem is simply a multi-dimensional multi-knapsack in-
stance. The knapsack problem is one of the most well-studied combinatorial optimization problems,
and tremendous efforts have been devoted to the development of efficient heuristic algorithms, from
which we adopt some ideas for item placement. In particular, we first apply a greedy method in which
items are first sorted based on their sizes and then assigned to containers. This will produce the very
first feasible solution. After that, a large neighborhood search idea is considered as an improvement
heuristic approach. We select one or two items respectively from two containers and swap them if
this leads to a better incumbent.

Math-heuristics Math-heuristic methods are based on solving mathematical models. We consider
a construction method and an improvement method. The construction method consists of two steps:
(i) first assign items to the first five containers by solving an assignment model; (ii) then assign the
remaining items to the last five containers by solving a sub-MIP. The assignment model is defined as
follows:

(a) combine small items to generate candidates that might be placed in the first five containers;
(b) assume all items that are placed at the remaining containers have “continuous” sizes (rather

than “discrete”);

3

(c) add an SOS1 constraint for each small item (to ensure that each item will be placed in at
most one container).

Again, the large neighborhood search method is utilized for solution improvement. Specifically, we
properly choose two out of the last five containers, and then solve a sub-MIP to reassign items within
those two containers optimally.

A pictorial representation of the math-heuristic method is given in Figure 2.

Figure 2: Math-heuristics for item placement

3.2 Load balancing

Observation 1 Rounding up a solution to the linear programming relaxation of model (9) – (14)
would produce a feasible solution to (9) – (14).

Observation 1 is clearly valid since rounding up the fractional element yj with a non-zero value
will not affect the satisfaction of linear constraints in the model but produce an integral solution.
To further exploit the possibility of rounding a fractional solution towards a new incumbent, in our
implementation, we adaptively select the rounding threshold η for yj . In another word, we choose η
in an adaptive manner and round up yj only if it exceeds η. The large η values would lead to solutions
with smaller objective values but might cause returned solutions to be infeasible, hence some care has
been taken when choosing η. Specifically, we first select a target objective value based on the current
primal and dual bounds and then determine η via quantile selection such that after rounding with η
the objective matches the predetermined value. The initial primal bound corresponds to the feasible
solution returned by rounding up every fractional element yj with a non-zero value, while the initial
dual bound is approximated by amplifying the root node lower bound with a certain factor. If the
rounding step produces a new incumbent solution, we then update the primal bound; otherwise, we
set the dual bound to the corresponding objective value. We iterate this process until the primal-dual
gap falls below a certain threshold.

Observation 2 In model (9) – (14), constraints (11) can be tightened as follows:∑
i∈M :j∈Ni

xij ≤ bjyj ∀j ∈ N. (15)

Due to constraints (10), yj = 0 implies xij = 0, hence Observation 2 is valid. Furthermore, across
10, 000 instances, we also observe that ai < bj for i ∈ M, j ∈ N i. As a result, constraints (10) are

4

dominated by (15) and thus eliminated from the model. Now we call (9), (12) – (15) as the “tightened
model”.

In our experience, the tightened model has a much better root node bound. Thus, the root node
linear programming (LP) solution is likely to be a good candidate for the rounding heuristics we
discussed previously. In our implementation, we first apply the rounding heuristic method to the root
LP solution to the original model and then to the optimal LP solution to tightened model. To further
improve the incumbent, we then adopt RINS. In particular, we define and solve a sub-MIP based
on the tightened model, using its LP solution and the current incumbent as a guide to fix part of the
binary variables.

3.3 Anonymous

Though the concrete MILP formulation is not available, we can discover some pattern from MILP
instances in the LP file format.

Observation 3 One can define a planning horizon and associate with each discrete variable a time
period.

The details of Observation 3 can be deduced from the constraint hypergraph [9] in which every node
represents a discrete variable and every edge joins a pair of variables if they occur together in a
constraint. Let H denote the planning horizon and h ∈ H denote a time period, as shown in Figure 3.

Figure 3: Planning horizon

Based on Observation 3, we propose our first primal heuristic called a “rolling-horizon” method
(Figure 4), which consists of the following steps:

(i) ignore constraints involving discrete variables with their h values greater than H̃;

(ii) relax the integrality constraints on variables with their h values greater than H;

(iii) fix those discrete variables with their h values less than Ĥ at the optimal solution from a
previous run;

(iv) solve the sub-MIP;

(v) increase Ĥ,H and H̃ and then iterate steps (i) - (iv) until Ĥ = H .

Figure 4: The rolling-horizon method

Parameters Ĥ,H and H̃ are selected adaptively to balance feasibility, optimality, and the compu-
tational cost of solving sub-MIPs. We remark that the rolling-horizon method might be generally

5

applicable to optimization models with discrete variables spanning consecutive time periods, for
example, inventory management models.

The rolling-horizon method is often quite time-consuming, hence we first utilize some computation-
ally favorable methods to generate the very first solutions. In particular, we implement a variant
of feasibility pump that combines a rounding step and a projection step, using weak and strong
perturbation to escape cycle or stalling. After obtaining the first incumbent, we then call RENS.
Specifically, the RENS model is a sub-MIP defined by fixing those discrete variables with their h
values less than 0.9H at the incumbent.

4 Computational Results

We implement our code in Python except that the meta-heuristic algorithm is implemented in C++.
The evaluation is conducted via Ecole 0.7.3 [8], using the PySCIPOpt 3.3.0 [7] interface to call
SCIP 7.0.3 [6] as the LP and MILP solver. The test set includes 100 instances for both item placement
and load balancing, 20 anonymous instances (run each instance with 5 different seeds). The time
limit is 300 seconds for each instance and the average primal integral is reported as the performance
metric.

We adopt the final results from [1] and provide the synopsized version in Table 1. The columns
“Item placement”, “Load balancing”, and “Anonymous” report the average primal integral values
across 100 runs, respectively. Compared with the second places (2nd in Table 1) in item placement,
load balancing and anonymous benchmarks, our proposed approaches produce 67.5%, 51.8%, and
7.7% smaller primal integral values, respectively. Clearly, our customized approaches significantly
outperform those from other teams in the competition.

Table 1: Computational results in the ML4CO competition

Team Primal integral

Item placement Load balancing Anonymous

Our work 358.43 1145.31 35220755.00
2nd 1102.19 2374.55 38163724.79

5 Conclusions

In this work, we propose specialized primal algorithms for tackling item placement, load balancing
and anonymous benchmarks in the ML4CO competition. Our approaches are mainly based on classic
primal heuristics in the MILP literature. However, we exploit the problem structures and employ
those heuristics in a much more sophisticated manner. As a result, our proposed algorithms perform
significantly better than the other approaches in the ML4CO competition.

References
[1] https://www.ecole.ai/2021/ml4co-competition/, accessed on January 22, 2022.

[2] Livio Bertacco, Matteo Fischetti, and Andrea Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, 4(1):63–76, 2007.

[3] Timo Berthold. Rens. Mathematical Programming Computation, 6(1):33–54, 2014.

[4] Emilie Danna, Edward Rothberg, and Claude Le Pape. Exploring relaxation induced neighbor-
hoods to improve mip solutions. Mathematical Programming, 102(1):71–90, 2005.

[5] Matteo Fischetti, Fred Glover, and Andrea Lodi. The feasibility pump. Mathematical Program-
ming, 104(1):91–104, 2005.

[6] Gerald Gamrath, Daniel Anderson, Ksenia Bestuzheva, Wei-Kun Chen, Leon Eifler, Maxime
Gasse, Patrick Gemander, Ambros Gleixner, Leona Gottwald, Katrin Halbig, et al. The scip
optimization suite 7.0. 2020.

6

https://www.ecole.ai/2021/ml4co-competition/

[7] Stephen Maher, Matthias Miltenberger, Joao Pedro Pedroso, Daniel Rehfeldt, Robert Schwarz,
and Felipe Serrano. Pyscipopt: Mathematical programming in python with the scip optimization
suite. In International Congress on Mathematical Software, pages 301–307. Springer, 2016.

[8] Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and
Andrea Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization
solvers. arXiv preprint arXiv:2011.06069, 2020.

[9] Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint programming.
Elsevier, 2006.

7

	Introduction
	Problem definitions
	Item placement
	Load balancing
	Anonymous

	Solution approaches
	Item placement
	Load balancing
	Anonymous

	Computational Results
	Conclusions

